If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+12x^2=24336
We move all terms to the left:
5x^2+12x^2-(24336)=0
We add all the numbers together, and all the variables
17x^2-24336=0
a = 17; b = 0; c = -24336;
Δ = b2-4ac
Δ = 02-4·17·(-24336)
Δ = 1654848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1654848}=\sqrt{97344*17}=\sqrt{97344}*\sqrt{17}=312\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-312\sqrt{17}}{2*17}=\frac{0-312\sqrt{17}}{34} =-\frac{312\sqrt{17}}{34} =-\frac{156\sqrt{17}}{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+312\sqrt{17}}{2*17}=\frac{0+312\sqrt{17}}{34} =\frac{312\sqrt{17}}{34} =\frac{156\sqrt{17}}{17} $
| -19c+4c-5=20 | | 2x-19+5x+28=180 | | 2(4+r)+3r-7=11 | | |30x|=6 | | -5(2-x)-7x-3=4x-19 | | 4n=1-6 | | c(3+2)=-15 | | 8.13=x-4.5 | | 3x-18+2(x-4)=-56 | | y=-7/2+3/2 | | 7x-20+6x-1=90 | | 14=2x+x−2x+x | | u/3+9=30 | | 75+x+5+x=99 | | x+(-1)+8=4 | | 1.125=3/8(b-2) | | 75+x5+x=99 | | x+(-1)+2(4)=4 | | –2=–j+7 | | 6(6s+8)=12 | | j+`1/3=3/4 | | 2+2a+4=9-2a | | 9x+5=4x+4 | | 37=50+5.8q | | 14.75+105y=9.50y | | 65=x-8 | | 14.75+105y=14.75+9.50 | | 11=-0.16x+13.35 | | 32=(9x+4) | | Z=(4z-10) | | t(4.9t+24.5)=0 | | x+x+4=50 |